5 research outputs found

    Evaluating Animation Parameters for Morphing Edge Drawings

    Full text link
    Partial edge drawings (PED) of graphs avoid edge crossings by subdividing each edge into three parts and representing only its stubs, i.e., the parts incident to the end-nodes. The morphing edge drawing model (MED) extends the PED drawing style by animations that smoothly morph each edge between its representation as stubs and the one as a fully drawn segment while avoiding new crossings. Participants of a previous study on MED (Misue and Akasaka, GD19) reported eye straining caused by the animation. We conducted a user study to evaluate how this effect is influenced by varying animation speed and animation dynamic by considering an easing technique that is commonly used in web design. Our results provide indications that the easing technique may help users in executing topology-based tasks accurately. The participants also expressed appreciation for the easing and a preference for a slow animation speed.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Weakly and Strongly Fan-Planar Graphs

    Full text link
    We study two notions of fan-planarity introduced by (Cheong et al., GD22), called weak and strong fan-planarity that separate two non-equivalent definitions of fan-planarity in the literature. We prove that not every weakly fan-planar graph is strongly fan-planar, while the density upper bound for both families is the same.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Axis-Parallel Right Angle Crossing Graphs

    Full text link
    A RAC graph is one admitting a RAC drawing, that is, a polyline drawing in which each crossing occurs at a right angle. Originally motivated by psychological studies on readability of graph layouts, RAC graphs form one of the most prominent graph classes in beyond planarity. In this work, we study a subclass of RAC graphs, called axis-parallel RAC (or apRAC, for short), that restricts the crossings to pairs of axis-parallel edge-segments. apRAC drawings combine the readability of planar drawings with the clarity of (non-planar) orthogonal drawings. We consider these graphs both with and without bends. Our contribution is as follows: (i) We study inclusion relationships between apRAC and traditional RAC graphs. (ii) We establish bounds on the edge density of apRAC graphs. (iii) We show that every graph with maximum degree 8 is 2-bend apRAC and give a linear time drawing algorithm. Some of our results on apRAC graphs also improve the state of the art for general RAC graphs. We conclude our work with a list of open questions and a discussion of a natural generalization of the apRAC model

    Axis-Parallel Right Angle Crossing Graphs

    Get PDF
    A RAC graph is one admitting a RAC drawing, that is, a polyline drawing in which each crossing occurs at a right angle. Originally motivated by psychological studies on readability of graph layouts, RAC graphs form one of the most prominent graph classes in beyond planarity. In this work, we study a subclass of RAC graphs, called axis-parallel RAC (or apRAC, for short), that restricts the crossings to pairs of axis-parallel edge-segments. apRAC drawings combine the readability of planar drawings with the clarity of (non-planar) orthogonal drawings. We consider these graphs both with and without bends. Our contribution is as follows: (i) We study inclusion relationships between apRAC and traditional RAC graphs. (ii) We establish bounds on the edge density of apRAC graphs. (iii) We show that every graph with maximum degree 8 is 2-bend apRAC and give a linear time drawing algorithm. Some of our results on apRAC graphs also improve the state of the art for general RAC graphs. We conclude our work with a list of open questions and a discussion of a natural generalization of the apRAC model

    RAC Drawings of Graphs with Low Degree

    Get PDF
    corecore